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INTRODUCTION

Consider a large noisy room in which sound can reverberate. In one end of the

room a speaker radiates a narrow band signal. In a remote part of the room a sensor

array records the sound pressure at each sensor location and attempts to detect the sig-

nal. Let k denote the number of sensors. Locally, the signal can cross the array in a

small number of modes of travel. Let m denote the number of such modes. We shall

assume that m< k. Each mode may be associated with a separate acoustic path. In the

simplest case, each mode may be represented by the time delays associated with a

plane wave arrival. However, this assumption is not necessary for this discussion. All

that will be assumed is that each mode is characterized by a rank-I covariance matrix

and that the vector factor of each of these rank-I matrices is known. Let v, denote

the vector factor for the i th mode.

Note that since the signal is assumed to be narrow band, it is convenient to for-

mulate the problem in the frequency domain. This means that all of the pressures dis-

cussed will be represented by complex numbers.

The signal will now be characterized by the amplitude coefficients associated with

the modes. The signal field at any time is the sum of the products of each mode and

its associated amplitude. Let oti denote the amplitude of the i th component. Then

Vthe total signal field can be described by a vector, s, whose components are the total

* signal pressures at each of the sensor positions.

S I a+ C2 V2 + (1)

Let V denote a matrix whose column vectors are the vector factors.

V 1 [v v . v, (2)

a2  (3)

so that

s V a (4)

So the number of rows in V is k, the number of elements in the array, and the number

O of columns in V is m. a is an m element complex vector.

It will also be convenient to define a covariance matrix for the complex coefficients, ao.
Let < > denote an ensemble average. Then let
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A = < aa1 > (5)

Under certain assumptions, the signal covariance matrix will still be of rank-1. For
example, we might require that the source not move, that none of the reflecting surfaces
move, that no air currents disturb the sound path, etc. Such assumptions are too stringent
for the purposes of this discussion. Instead, we shall assume that the sound paths vary
ent,ugh, or at least involve enough unknown parameters, that we must attempt to estimate
the o's, or A. We shall assume that the rank of A is m.

The novelty in this paper will be the rank-m signal. The conceptual problems are
considerably more difficult than for the rank-I case. Different criteria lead to different
detector designs, and the connection between the designs is not obvious. The first
viewpoint which we use will ignore the detection problem and concentrate on the estima-
tion probiem.

MAXIMUM LIKELIHOOD ESTIMATION OF a

Maximum likelihood estimation theory seems to provide the simplest padh 1() oxiend
existing array processing theory for this multiple-parameter signal problem. We sihal!
assume Gaussian noise. Let x denote a column vector of complex pressures from each

V-.- sensor. Let C denote the noise-only covariance matrix. Then for any received pressure
field. x, the problem is to choose a to minimize

(x - V a)" C-1(x - V a) (6)

"V" This can be expanded as

Sx C-'x - x" C-V a - allV C-1x + allV C-1 V a (7)

We can rearrange the terms to get

xC-Ix - x" C-1V (V" C-1 V)- 1 V" C-1 x (8)

+ (a-(t"C/ 1 V)-'Vt"C-lx)"t(V/1C-1V) (a-(V"C-1 V)-'VlC-1 x)

"- Obviously, the minimum of this quantity occurs when

a, = (Vn C-V)-V" C-'x (9)

aa. and the minimum is

* xnC-Ix - x1 C- 1 V (V"C-IV)-Iv1 C- x (10)

It is appropriate to define an estimation matrix operator as

E (VnC- 1 V )-VC 1  (11)
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This operator warrants further exam in ation. The reader may note that
V( V"C-1 V )-V"C- is the projection operator for V, when the metric matrix is C- 1. This
association with projection operators provides a nice geometric interpretation of the pro-

% cessing algorithms.

Note that E should be used with caution when any of the v, become nearly equal. In
this case, the matrix V"C- becomes nearly singular and some undesirable noise

amplification effects can occur. This subject is still under investigation.

Of course, the proper extension of conventional beam-forming can be found by set-
ting C to the identity matrix.

It is probably best not to refer to the processing scheme described above as beam-
forming. All current beam-forming theory assumes that the estimation operator is a sim-
pie column vector. The fact that E is a matrix complicates the processing somewhat.

ESTIMATING THE ESTIMATOR

Assuming that the estimator matrix, E, is to be used, it must first be computed from
C and V. But if C is to be estimated from data, it may be difficult to obtain noise-only
data from which to compute C. Let us assume that, unbeknown to the operator, a signal
is present to contaminate the estimation of C. Let us examine the error which will result
from his attempt to evaluate Eq. 11. He will actually compute

Es+,N= (V"(C + V A V'1 )- V)-V1'(C + V A V") -' (12)

We must examine what happens when C + V A V1" is substituted for C. Note that from
Woodbury's formula

C + V A V")- = C - 1- C-1V 7" V't C - 1  (13)

where

T -1 = A - + VC-V (14)

+ VCp'

Note that, among other things, this means that

(V"(C + V A V")-V)-l = (V"C-V - V"C- 1V T V"C-1 V)-l (15)

- (VHC-IV)-I_U

* * where

T-1 +U-'=( V"C-1 V ) (16)

* so

3
0

-1. ). (



EqA r U=-T A-ARJ G-lw T9r2

>.U~ (17)

and

(V"(C + V A V")_TVY 1  ( "C-11 )_1 + A (18)

4 We can usc this to compute the effect of the presence of signal.

ESN ( ( "C_ 1  )-'+A ) 1'( C'--C-11' 7- V"C'1) (19)

-(V"[C-' )'1V"C-'-(' - A + A (V"C'l') 7) V"1C'

- (V"CV 1v"C-'-( TI - A ± A ( T-1 -A- 1) 7' V"'C-1

=V"C-
1 1 )'1V"C'-= E

In other words, no error results. The formula is invariant with respect to the arrival of the
Sig(n al.

POWVER ESTIMATION

The estimate of the signal pressure in the sensors is

s~st V E x (20)

From this, we can estimate the signal-like energy as

.4.. V E x)"(V E x) < x"11E"V"V E x> (21)

=< tr(E"' V/" V E x x")> ==< tr(El" V1/ V E C )> = ir( V 11 E C EH)

Note that, because of the iesult in the Previous section, we can be ambiguous about
whether E was estimated from the true noise- only covariance matrix or from the current
data matrix. So

< sis..,> = tr( (WV"V ) (v11C- 1Vf'1) (22)

This expression is evidently the proper extension of the popular adaptive bearing
response algorithm, sometimes referred to as the 'maximum likelihood" or "minimum
variance distortionless look" algorithm.

4
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Of course, we can also easily extend the conventional beam-forming algorithm. In

this case

Ec.. = ( V 1 V )-V" (23)

So

'p.5t((,.)E .. C n=., VtV

tr( (V" V ) ElC E!... ) tr( (V" C V ) (l V )- 1) (24)

This is not, however, the optimum detection structure. There are some other con-
ceptual issues to be discussed below.

LIKELIHOOD RATIO DETECTION

The structure for the likelihood ratio detector is easy to derive. We need simply to
look at the exponent in the ratio of the Gaussian probability functions.

-x"( C + V A V")-lx+x" C-lx = x" C-V T V"C-'x (25)

SIf several samples of x are to be averaged, this may be more conveniently written as

tr( C- 1V 7T " C-< x x1>) (26)

Note that in this case, one must evidently have noise-only information from which
to estimate C.

In fact, the form of the likelihood ratio detector suggests theoretical problems which
are considerably more difficult than one might guess. The probe variable, Eq. 26, does not

" hehavx' -'cordii" to t,- simp'-e ,-,mma di-tributiorn which we expect for square-law detec-
tors. It is formed from a sum of exponential variables with different variances. This, as
will be seen below, complicates the conceptual picture.

PERFORMANCE INDICES

In the previous section, we saw that the optimum detector takes the form of a qua-
0 dratic inner product. For discussion of detector performance it is convenient to generalize

this algorithm. We shall define a variable

I ii=< xH W x>= tr( W< xx" ) (27)

where W is a general square matrix. This function can be regarded as a generalization of
the beam-forming process. It will result in a scalar variable, 1I. We must now define a
signal-to-noise-ratio function to describe the statistics of r1. The first step is to examine the
moments of 71.

< TI > N= tr( C W ) (28)
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< > 1,x tr( (C + V' A ") It ' ) (29)

Ilere ,ve encounter a subtle conceptual trap. It is terngptil to use these two formulas to
define a signal-to-noise ratio. This approach depends on the standard deviation of the vari-
able being proportional to tile mean value of the variable. ItowAcver, since fl is a sum of
unequal exponential variables, this will not give a good indicator of the standard deviation
of q. We must compute the variance more carefully.

N.. varian(ce < ( x1 I " 
x ) 2> \ < > \2 (30)

This requires us to evaluate Fourth order moments for complex Gaussian variables. It is
-* well known that if a. g, ;.and 4 are real Gaussian random variables, then

< ;:,.3 4> = < < < , + < , < q.,.> < ,.><,,> H tlowever, the
corresponding result for complex Gaussian variahles is not widelv known. It is

< . - < , '- .-> K < . :> 3 (31.

With this knowlede and some inde\ arithmetic it can ()e seen that

variance - "r( Ic C ) (32)

We are now in a position to define a signal-to-noise ratio (snr).

(stir) 2 tr( VA " ' )tr( t' V A 1 (33
tr( W C it' C)

This is easy to compute for the likelihood ratio detector.

2 (tr(C-V '1, T ./¢-1" ' A V// (34)

- ~ ~ ~ ~ ~ ~ ~ ~ 7 (VIn~T rC!, ' 7VCI" -T A HC )
. st, (ir ;R : ( r((,X I I V T ' (!,'c I V" CA 'C ( 5

(s.r" tr((V" CV) 7 (VCt  )5

9 MAXIMIZING SIGNAL-TO-NOISE RATIO

Z, Curiously, there is reason to believe that even Eq. 33 does not tell the whole story.
To see this, consider how IV might be chosen to maximize the signal-to-noise ratio. We

%, can use differential calculus, or the Schwarz inequality to maximize the signal-to-noise ratio
with respect to W.

WSNR C- VA V"-'C (36)
..

This produces a squared signal-to-noise ratio of

6



(,r),, Ztr( Itc V)A C1" ('C V )A) (37)

It is not entirely clear why this detector would not be as good as the likelihood ratio
detector. It must be due to the peculiar behavior of the tail end of the distribution. This
illustrates tile difficulties of dealing with sums of unequal exponential variables.

Note that Eq. 37, like Eq. 22 or Eq. 24, could be used as a probe function. How-
ever, the use of fourth-order moments is not gencrally desirable.

ESTIMATION OF A

Minimizing tile right side of Eq. 37 with respect to A can yield an estimate of A.
Again, the idea is that tile noise which looks most like the signal will be that which is most
difficult to process against. Of coursc, the trace of A must be constrained, so We have
merely to minimize

r1 (VC (,')A (V"C-A'A)(
-2 ( 3 8 )

(tr(A ))2

We can miinimi,e this with respect to A . The result is

A = (-C -'V )-2 (39)

,lowever, it is not clear that this is a good estimator. Once again, the appearance of
,. . fourth-order moments may cause problems.

ANOTHER FACTORIZATION

In all of the above discussion, the signal covariance matrix has been expressed as a
product of three factors. That is, the signal covariance matrix has been written as V A V1 1 .
This factorization was chosen because it lends itself to physical interpretation. However,
from a mathematical viewpoint, the factorization is not unique. For some purposes, we
can find a simpler factorization. If we are willing to give up the obvious physical interpre-
tation, we can choose V so that A is an identity matrix and (V"C-1V) is diagonal. In other

%4,, words, we can assume without loss of generality that

, A / and 1'"C-1' = D (40)

where I is the identity matrix and D is a diagonal matrix. These substitutions in the above
equations provide an apparent simplification. These simplifications may help provide an
intuitive understanding for readers who are comfortable with the geometric implications of
Eq. 40.

CONCLUSIONS

This paper extends the class of signals we can address with established array signal
detection/estimation ideas. It does not provide a logical alternative to familiar array pro-

* cessing techniques. Rather, it allows extension of these signal processing ideas to a class of
signal which is often present but often ignored. It provides a way to deal with problems in

7
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:a.:,9 M l ar ,, , , , .nar,.. ,- ,, ., ,,, .' r 'rw in , . -, r -T I Z 7 ; . s rw ,,rr,--

,' -hic r multiple signals characterize a single hyvpothesis.

Probably the most important idea developed above is the estimator i.atri,. F, ,,
described in Eq. II. The utility of this estimator depends on Eq 19). That is, we can csti-
in ate F wvithout knowing whether a signal was present in the data san pled.

'Fle utilit, of probe or estimation functions such as Eq. 22, 24, 37, and 39 is not Nct

clear. The answer will probably depend on details of the actual applications. It is impor-
tant to carcfull' investigate the a priri information about the signal paraieter iatrix, A
and the required search space.

Equation 33 call probably give a reasonable estimate or detection perform ance in
most cases. However, since the noise is a sum of unequal variance exoonential variables.
it may not always give accurate results. Equation 33 should be useful if applied with cau-
tion and insight. Any analvsis which ignores Eq. 33 ,,ill probably be wrong.

In general, it the problem involves a single sigal which lits the usual bean -rorm inc
assuminptions, tie ideas presented above are not needed. If the signal breaks up into coln-

- ponents v hich may not be entirely coherent, the ideas developed above in av colie inlto
pla.,I

I.:
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A ppen di x

FSTIMATION MATRIX AND CONSTRAINED OPTIMAl, IEAM-FORMIN(

The etimation matrix, E, can play a role in beam-forming. It occurs in the structure
of optimal beam-forming with hard constraints. Since the derivation seems not to he avail-
able in the open literature, we shall examine it here.

The basic problem may be stated as follows. Design a beam-former which has
minimum noise output subject to the constraint of specified responses in certain directions.
Let z denote a vector of beam -form ing weights. Let V denote a matrix whose colum us are
the models for signals from the constraint directions. Let h denote a column vector of
constraint values for each direction. The the constraint can be written as

Vtz = h, (A.1)

This type of constraint may be used in several ways. If the constraint directions arc
close together, it could be used for main-lobe maintenance or broadc.,ing. The beam
could be made to have main-lobes in two or more different directions. The beam could
also be made to have nulls in certain directions by setting the appropriate components of h
to zero. For examp!c, if v, was the desired look direction, main-lobe maintenance could
be accomplished by setting the other v's to directions about v, and computing b from
V;v1 = b.

We shall assume that the number of constraint directions is less than the number of
sensors.

,. The optimization process follows standard paths. First, we define a quantity to be
minimized. Let C denote the noise covariance matrix.

" z" C z + .(' z - b)"(I'lz - b) (A.2)

We shall define z as the vector which minimizes t and find the limit as k goes to infinity.
To simplify the notation, it is co.tvenient to define the matrix

m = C + XV V( A.3)

Then we can expand the expression for t.

"'= z" (C+ kV V )z - .z" VB - Xh" V" z + .!" b (A.4)

0

" (M z - V b)" M -(M z- ?V b) ; h(I- " Al-V)b

Since the first term is the only one which depends on z, it is sufficient to minimize
it. This means that

0

9
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X(C + XV OTT' b C +( "- (A.5)

Since V V1 is singular, more manipulation is required before it is clear how to take the
limit as X goes to infinity. Again, Woodbury's theorem helps.

z = (xC- 1- x 2C-1 v (I+ ,V"1C1v)"1V"C- 1) V b (A.6)

- I~ + V" C- V )- b

Now we can take the limnit as X goes to infinity.

z= C'1V ( l'"C'Vl )-b = Ellb (A.7)

In other words, the optimal solution consists of first applying the estimation opera-
tor, E, and then simply multiplying by the constraint values in b.
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